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Abstract

The Message Passing Interface (MPI) standard for programming par-
allel computers is widely used for building both programs and libraries.
Two of the strengths of MPI are its support for libraries and the existence
of multiple implementations on many platforms. These two strengths are
in conflict, however, when an application wants to use libraries built with
different MPI implementations. This paper describes several solutions to
this problem, based on minor changes to the API. These solutions also
suggest design considerations for other standards, particularly those that
expect to have multiple implementatations and to be used in concert with
other libraries.

The MPI standard [1, 2] has been very successful. There are multiple imple-
mentations of MPI for most parallel computers [3], including vendor-optimized
versions and several freely-available versions. In addition, MPI provides support
for constructing parallel libraries. However, when an application wants to use
routines from several different parallel libraries, it must ensure that each library
was built with the same implementation of MPI. This is due to the contents of
the header files ‘mpi.h’ (for C and C++) and ‘mpif.h’ for Fortran or the MPI
module for Fortran 90. Because the goals of MPI included high performance,
the MPI standard gives the implementor wide latitude in the specification of
many of the datatypes and constants used in an MPI program. For each indi-
vidual MPI program, this lack of detailed specification of the header files causes
no problems; few users are even aware that the specific value of, for example,
MPI ANY SOURCE is not specified by the standard. Only the names are specified.
Because the values of the items defined in the header files are not defined

by the standard, software components that use different MPI implementations
may not be mixed in a single application. Users currently faced with building
an application from multiple libraries must either mandate that a specific MPI
implementation be used for all components or that all libraries be built with all
MPI implementations. Neither approach is adequate; third-party MPI libraries
may only be available for specific MPI implementations and the building and
testing each library for each MPI implementation is both time-consuming and
difficult to manage; in addition, the risk of picking the wrong version of a library
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is high, leading to problems that are difficult to diagnose. Finally, while building
each library with each version of MPI is just possible, this solution doesn’t scale
to other APIs that have multiple implementations. Thus, a solution that allows
an application to use any implementation of MPI (and, using similar techniques,
other libraries) is needed.
There are at least two solutions to this problem. The first is completely

generic. It effectively wraps all MPI routines and objects with new versions
that work with any MPI implementation by deferring the choice of a specific
implementation to link-time (or even runtime if dynamically-linked libraries
are used). Fortunately, the emergence of tools for building language-specific
interfaces from language-independent descriptions of components can be used;
this approach is described in a companion paper [5]. The second is a practical
subset for MPI implementations whose opaque objects have the same size (e.g.,
all four bytes). Neither solution is perfect in the sense that both require some
changes to the source code of an existing component that already uses MPI.
In many cases, however, these changes could be automated, making their use
almost transparent. This paper focuses on the C binding of MPI, with some
comments about C++ and Fortran. A brief discussion of the first alternative
is followed by a detailed discussion of the second, along with implementation
examples.

1 Brief Overview of MPI

The MPI specification itself is language independent. The MPI-1 standard spec-
ifies bindings to C and Fortran (then Fortran 77); the MPI-2 standard added
bindings for C++ and Fortran 90. MPI programs are required to include the ap-
propriate header file (or module for Fortran 90); for C and C++, this is ‘mpi.h’.
The contents of this file include: typedefs for MPI opaque objects, definitions
of compile-time constants, definitions of link-time constants (see below), and
function prototypes. However, the implementation is given wide latitude in the
definition of the definitions of the named objects. For example, the following
definitions for the MPI object used to describe data layouts (MPI Datatype) are
used by four common implementations:

Implementation Datatype definition
LAM typedef struct _dtype *MPI_Datatype;

IBM typedef int MPI_Datatype;

SGI typedef unsigned int MPI_Datatype;

MPICH typedef int MPI_Datatype;

While no implementation appears to use a struct rather than an int or pointer,
nothing in the MPI standard precludes doing so.
The MPI standard also requires each routine to be available with both MPI

and PMPI prefixes. For example, both MPI Send and PMPI Send are required.
This is called the profiling interface. The intent of the PMPI versions is to allow a
tool to replace the implementations of the MPI routines with code that provides
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added functionality (such as collecting performance data); the routine can then
use the PMPI version to perform the MPI operation. This is a powerful feature
that can be exploited in many applications and tools, such as the performance
visualization tools Jumpshot [6] and VAMPIR [4].

2 A Generic MPI Component

The most general solution is to create a new MPI component. This can be
thought of as a new binding of the MPI standard; it must define every element
of MPI. For concreteness, we will call this the GMPI binding, and for each
MPI term, this new component will provide a GMPI version. Rather than re-
implement MPI, this component is implemented in terms of an MPI implemen-
tation, providing for the translation between objects defined by the component
and the corresponding object in each MPI implementation. For example, the
definition of a generic MPI Datatype might be

typedef GMPI_Handle *GMPI_Datatype;

The implementation of a simple routine such as GMPI Type free might look
something like

int GMPI_Type_free( GMPI_Datatype *type )

{

MPI_Datatype local_type = GMPI_to_mpi_datatype( type );

int rc;

rc = MPI_Type_free( &local_type );

if (!rc)

*type = MPI_to_gmpi_datatype( local_type );

return rc;

}

Libraries built with such a component are interoperable; all that is needed
for each MPI implementation is an implementation of this new binding in terms
of each MPI implementation. However, code must be written to use this new
binding of MPI. In addition, because the interface is layered over another MPI
implementation, there is added overhead.
Note that because this routine calls the underlying MPI routine and not the

PMPI routine, this allows sue of any MPI tool, such as performance visualizers,
that exploit the MPI profiling interface. This code also leaves the error handling
to the underlying MPI routine; if that error handler returns a value, then this
routine will return that same value to the calling environment.
Because this is a complete binding of MPI, all MPI features are available to

any code that uses this approach. The lesson for API designers is that at a bind-
ing that fully specifies all values enables applications and can be provided along
with bindings that trade performance (though lack of detail in the specification)
for interoperability.
This solution and the techniques used to implemented it efficiently and

quickly are described in more detail in [5].
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3 A Generic MPI Header

An alternative solution is to find a common version of the header file that can
be used by multiple implementations. This solution is less general than the
generic component but has the advantage of requiring fewer changes to existing
codes. The approach here is to replace compile-time constants with runtime
constants by finding a common data representations for MPI objects. There
are some compromises in this approach that are discussed below. However, the
advantages are that it requires few changes to existing code and most operations
directly call the specific MPI routines (with no overhead).
The approach is as follows: define a new header file that replaces most

compile-time values with runtime values. These values are then set when the
initialization of MPI takes place, either though a version MPI Init or a special
GMPI Init. This initialization is described below. To make it clear that a special
initialization routine is required, we will refer to GMPI Init in the text below.
The header file ‘mpi.h’ contains the following items that must be handled:

Compile-time values. These include the constants defining error classes (e.g.,
MPI ERR TRUNCATE) and special values for parameters (e.g., MPI ANY SOURCE).
These can be replaced with runtime values that are initialized by GMPI Init.

A special case are the NULL objects such as MPI COMM NULL. Most imple-
mentations define all NULL objects the same way (either as zero or ¡1).
However, the MPICH-2 implementation encodes the object type in each
object handle, including the null object handles. Thus, these terms must
cannot be defined at compile-time.

Compile-time values used in declarations. This includes the constants defin-
ing maximum string sizes such as MPI MAX ERROR STRING. For many cases,
these can be replace by either the maximum or the minimum over the sup-
ported implementations. For example,

Implementation Size of MPI_MAX_ERROR_STRING

SGI 256
IBM 128
LAM 256
MPICH 512

Defining MPI MAX ERROR STRING as 512 is adequate for all of these MPI-1
implementations, since this value is used only to declare strings that are
used as output parameters. Other values are input, such as MPI MAX INFO KEY.
In this case, the minimum value should be used. While this might seem
like a limitation, a truely portable code would need to limit itself to the
minimum value used in an supported MPI implementation in any event,
so this is not a limitation in practice.

Link-time constants. MPI defines a number of items that are link-time, rather
than compile-time, constants. The predefined MPI datatypes such as

4



MPI INT belong to this category. For most users, the difference isn’t ap-
parent; it only comes up when users try to use one of these in a place
where compile-time constants are required by the language (such as case
labels in a switch statement). These are actually easier to implement than
the compile-time constants because it is correct to define them as values
that are initialized at run time.

Opaque objects. These are both the most difficult and the easiest. In prac-
tice, most implementations define these as objects of a particular size.
They may be ints or pointers, but never anything else. On many plat-
forms, ints and pointers are the same size. For such platforms, we can
simply pick one form (such as int) and use that.

If the size of these objects is different among different implementations,
then there is no easy solution. We cannot pick the largest size because
some MPI operations use arrays of opaque objects (e.g., MPI Waitsome or
MPI Type struct).

One additional compilication is the handle conversion functions introduced
in MPI-2. These convert between the C and Fortran representations of
the handles. For many implementations, these are simply cast operations.
However, for greatest flexibility, GMPI versions of these should be used,
e.g., GMPI Type f2c instead of MPI Type f2c. This defers until link time
the definition of these functions.

Defined objects (status). The most difficult case is MPI Status. MPI de-
fines this as a struct with some defined members such as MPI TAG. An
implementation is allowed to add its own members to this structure. Be-
cause of this, the size of MPI Status and the layout of the members may
be (and is) different in each implementation. The only solution to this is
to provide routines to allocate and free MPI Status objects and to provide
separate routines to access all of the elements. For example, instead of

MPI_Status status;

...

MPI_Recv( ..., &status );

if (status.MPI_TAG == 10 || status.MPI_SOURCE == 3) ...

you must use special routines such as

MPI_Status *status_p = GMPI_Status_create(1);

MPI_Recv( ..., status_p );

if (GMPI_Status_get_tag( status_p ) == 10 ||

GMPI_Status_get_source( status_p )) ...

GMPI_Status_free( status_p, 1 );

Fortunately, many MPI programs don’t need or use status. These pro-
grams should use the MPI-2 values MPI_STATUS_NULL or MPI STATUSES NULL

(which, of course, are initialized at run time).
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Defined pointers. MPI also defines a few constant pointers, including MPI BOTTOM

and MPI STATUS NULL. For many implementations, these are just (void

*)0. Like the most of the other constants, these can be set at initializa-
tion time.

MPI STATUS NULL is a special case. This is not part of MPI-1 but was
added to MPI-2. If an MPI implementation does not define it, a dummy
MPI_Statusmay be used instead. This will not work for the corresponding
MPI_STATUSES_NULL which is used for arguments that require an array of
MPI_Status, but is sufficient for most uses.

The complete list of functions that must be used for accessing information
in MPI_Status is:

create and free one status

get values for tag, source, error for one status

create and free an array of status

get values for tag, source, error for an element of an array of status

3.1 Using the generic header

Applications are compiled in the same way as other MPI programs, using the
‘gmpi.h’ header file instead of ‘mpi.h’. Linking is almost the same, except one
additional library is needed: the implementation of the GMPI routines in terms
of a particular MPI implementation. For example, consider an application that
uses GMPI and a library component that is also built with GMPI. The link line
looks something like

# Independent of MPI implementation (generic mpi.h in /usr/local/gmpi)

cc -c myprog.c -I/usr/local/gmpi

cc -c mylib.c -I/usr/local/gmpi

ar cr libmylib.a mylib.o

ranlib libmylib.a

# For MPICH

cc -o myprog myprog.o -lmylib -lgmpitompich -L/usr/local/mpich -lmpich

# For LAM/MPI

cc -o myprog myprog.o -lmylib -lgmpitolam -L/usr/local/lam -lmpi

With this approach, only one compiled version of each library or object file is re-
quired. In addition, for each MPI implementation, a single library implementing
GMPI in terms of that implementation is required.
To illustrate this, we show a simple library that can be used, in compiled

form, with two different MPI implementations on a Beowulf cluster. The simple
library provides two versions of a numerical inner product; one which uses MPI_-

Allreduce and is fast and one which preserves evaluation order for the operation
(unlike real numbers, floating-point arithmetic is not associative, so the order
of evaluation can affect the final result). The code for the library routine is
#include "mpi.h"

6



double parallel_dot( const double restrict u[],

const double restrict v[], int n, int ordered,

MPI_Comm comm )

{

int rank, size, i;

double temp, result;

if (ordered) {

MPI_Comm tempcomm;

/* A sophisticated version would cache the duplicated communicator */

MPI_Comm_dup( comm, &tempcomm );

MPI_Comm_rank( tempcomm, &rank );

MPI_Comm_size( tempcomm, &size );

if (rank != 0) {

MPI_Recv( &temp, 1, MPI_DOUBLE, rank-1, 0, tempcomm,

MPI_STATUS_NULL );

}

else {

temp = 0.0;

}

for (i=0; i<n; i++) {

temp += u[i] * v[i];

}

if (rank != size-1) {

MPI_Send( &temp, 1, MPI_DOUBLE, rank+1, 0, tempcomm );

}

MPI_Bcast( &temp, 1, MPI_DOUBLE, size-1, tempcomm );

MPI_Comm_free( &tempcomm );

result = temp;

}

else {

temp = 0.0;

for (i=0; i<n; i++) {

temp += u[i] * v[i];

}

MPI_Allreduce( &temp, &result, 1, MPI_DOUBLE, MPI_SUM, comm );

}

return result;

}

Note that this code uses the communicator that is passed into the routine.
The following shell commands show how easy it is to build this library so that it
may be used by either MPICH or LAM/MPI. The main program is in myprog

and includes the call to MPI_Init and MPI_Finalize.

% cc -c -I/usr/local/gmpi/include dot.c

% ar cr libmydot.a dot.o
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% ranlib libmydot.a

% cc -c -I/usr/local/gmpi/include myprog.c

% /usr/local/mpich/bin/mpicc -o myprog myprog.o -lmydot -lgmpitompich

% /usr/local/mpich/bin/mpirun -np 4 myprog

% /usr/local/lammpi/bin/mpicc -o myproc myprog.o -lmydot -lgmpitolam

% /usr/local/lammpi/bin/mpirun -np 4 myprog

4 Generic MPI for C++ and Fortran

What goes here? C++ uses can use a new class or versions of the C++ to C
wrappers that defer most choices to link time; because the C++ binding uses
methods for construction and access, even for status, C++ libraries can use a
generic MPI header with greater ease.
Fortran needs only replace parameter statements with values in common.

However, status becomes a problem. For individual status, we can just take a
maximum. For arrays, that’s not possible, unless we provide routines to access
the array elements as well.

5 Remarks for API Developers

(Sumarize the lessons: access methods for any object with variable size. Try
to minimize compile-time constants; define appropriate min/max values so that
programs can be portable; arrays of structures with undefined sizes are bad.)
Tradeoffs. Briefly discuss why MPI may the decisions that it did.

A Generic mpi.h header file

/*

* $Id$

*

* (C) 2002 by Argonne National Laboratory.

* All rights reserved. See COPYRIGHT in top-level directory.

*/

#ifndef _GMPI_INCLUDE

#define _GMPI_INCLUDE

/* 3. Opaque Objects */

typedef int MPI_Comm;

typedef int MPI_Group;

typedef int MPI_Op;

typedef int MPI_Datatype;

typedef int MPI_Errhandler;

typedef int MPI_Request;

typedef int MPI_Info;
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/* 1. Run-time values */

/* group and communicator comparison */

extern int MPI_IDENT;

extern int MPI_CONGRUENT;

extern int MPI_SIMILAR;

extern int MPI_UNEQUAL;

/* Datatypes */

extern MPI_Datatype MPI_CHAR;

extern MPI_Datatype MPI_UNSIGNED_CHAR;

extern MPI_Datatype MPI_BYTE;

extern MPI_Datatype MPI_SHORT;

extern MPI_Datatype MPI_UNSIGNED_SHORT;

extern MPI_Datatype MPI_INT;

extern MPI_Datatype MPI_UNSIGNED;

extern MPI_Datatype MPI_LONG;

extern MPI_Datatype MPI_UNSIGNED_LONG;

extern MPI_Datatype MPI_FLOAT;

extern MPI_Datatype MPI_DOUBLE;

extern MPI_Datatype MPI_LONG_DOUBLE;

extern MPI_Datatype MPI_LONG_LONG_INT;

extern MPI_Datatype MPI_LONG_LONG;

extern MPI_Datatype MPI_PACKED;

extern MPI_Datatype MPI_LB;

extern MPI_Datatype MPI_UB;

extern MPI_Datatype MPI_FLOAT_INT;

extern MPI_Datatype MPI_DOUBLE_INT;

extern MPI_Datatype MPI_LONG_INT;

extern MPI_Datatype MPI_SHORT_INT;

extern MPI_Datatype MPI_2INT;

extern MPI_Datatype MPI_LONG_DOUBLE_INT;

/* Fortran types */

extern MPI_Datatype MPI_COMPLEX;

extern MPI_Datatype MPI_DOUBLE_COMPLEX;

extern MPI_Datatype MPI_LOGICAL;

extern MPI_Datatype MPI_REAL;

extern MPI_Datatype MPI_DOUBLE_PRECISION;

extern MPI_Datatype MPI_INTEGER;

extern MPI_Datatype MPI_2INTEGER;

extern MPI_Datatype MPI_2COMPLEX;

extern MPI_Datatype MPI_2DOUBLE_COMPLEX;

extern MPI_Datatype MPI_2REAL;

extern MPI_Datatype MPI_2DOUBLE_PRECISION;

extern MPI_Datatype MPI_CHARACTER;

/* Communicators */

extern MPI_Comm MPI_COMM_WORLD;

extern MPI_Comm MPI_COMM_SELF;
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/* Groups */

extern MPI_Group MPI_GROUP_EMPTY;

/* Collective operations */

extern MPI_Op MPI_MAX;

extern MPI_Op MPI_MIN;

extern MPI_Op MPI_SUM;

extern MPI_Op MPI_PROD;

extern MPI_Op MPI_LAND;

extern MPI_Op MPI_BAND;

extern MPI_Op MPI_LOR;

extern MPI_Op MPI_BOR;

extern MPI_Op MPI_LXOR;

extern MPI_Op MPI_BXOR;

extern MPI_Op MPI_MINLOC;

extern MPI_Op MPI_MAXLOC;

/* Permanent key values */

/* C Versions (return pointer to value) */

extern int MPI_TAG_UB;

extern int MPI_HOST;

extern int MPI_IO;

extern int MPI_WTIME_IS_GLOBAL;

/* Define some null objects */

extern MPI_Comm MPI_COMM_NULL;

extern MPI_Op MPI_OP_NULL;

extern MPI_Group MPI_GROUP_NULL;

extern MPI_Datatype MPI_DATATYPE_NULL;

extern MPI_Request MPI_REQUEST_NULL;

extern MPI_Errhandler MPI_ERRHANDLER_NULL;

/* 2. Compile-time values */

/* Output values (max over implementations) */

#define MPI_MAX_PORT_NAME 256

#define MPI_MAX_PROCESSOR_NAME 256

#define MPI_MAX_ERROR_STRING 512

#define MPI_MAX_NAME_STRING 63

/* Input or input/output values (min over implementations) */

# define MPI_MAX_INFO_KEY 255

# define MPI_MAX_INFO_VAL 1024

/* Pre-defined constants */

extern int MPI_UNDEFINED;

extern int MPI_UNDEFINED_RANK;

extern int MPI_KEYVAL_INVALID;

/* Upper bound on the overhead in bsend for each message buffer */

extern int MPI_BSEND_OVERHEAD;
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/* Topology types */

extern int MPI_GRAPH;

extern int MPI_CART;

#define MPI_BOTTOM (void *)0

extern int MPI_PROC_NULL;

extern int MPI_ANY_SOURCE;

extern int MPI_ROOT;

extern int MPI_ANY_TAG;

/* MPI Error handlers. */

typedef void (MPI_Handler_function) ( MPI_Comm *, int *, ... );

extern MPI_Errhandler MPI_ERRORS_ARE_FATAL;

extern MPI_Errhandler MPI_ERRORS_RETURN;

/* Make the C names for the null functions all upper-case. Note that

this is required for systems that use all uppercase names for Fortran

externals. */

/* MPI 1 names */

/* ??? These need wrappers? ??? */

#define MPI_NULL_COPY_FN MPIR_null_copy_fn

#define MPI_NULL_DELETE_FN MPIR_null_delete_fn

#define MPI_DUP_FN MPIR_dup_fn

/* MPI 2 names */

#define MPI_COMM_NULL_COPY_FN MPI_NULL_COPY_FN

#define MPI_COMM_NULL_DELETE_FN MPI_NULL_DELETE_FN

#define MPI_COMM_DUP_FN MPI_DUP_FN

/* User combination function */

typedef void (MPI_User_function) ( void *, void *, int *, MPI_Datatype * );

/* MPI Attribute copy and delete functions */

typedef int (MPI_Copy_function) ( MPI_Comm, int, void *, void *, void *, int * );

typedef int (MPI_Delete_function) ( MPI_Comm, int, void *, void * );

/* These constants can be left constant, since all implementations must have

the same values for them. In fact, they are required to be compile-time

values. */

#define MPI_VERSION 1

#define MPI_SUBVERSION 2

#define MPICH_NAME 1

/* for the datatype decoders */

extern int MPI_COMBINER_NAMED;

extern int MPI_COMBINER_CONTIGUOUS;

extern int MPI_COMBINER_VECTOR;

extern int MPI_COMBINER_HVECTOR;
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extern int MPI_COMBINER_INDEXED;

extern int MPI_COMBINER_HINDEXED;

extern int MPI_COMBINER_STRUCT;

/* for info */

extern int MPI_INFO_NULL;

/* for subarray and darray constructors */

extern int MPI_ORDER_C;

extern int MPI_ORDER_FORTRAN;

extern int MPI_DISTRIBUTE_BLOCK;

extern int MPI_DISTRIBUTE_CYCLIC;

extern int MPI_DISTRIBUTE_NONE;

extern int MPI_DISTRIBUTE_DFLT_DARG;

typedef long MPI_Aint;

typedef int MPI_Fint;

/* What do we want to do about status ? */

typedef struct { int dummy[10]; } MPI_Status;

extern MPI_Status *MPI_STATUS_NULL;

/* Handle conversion types/functions */

/* Programs that need to convert types used in MPICH should use these */

/* These need to be fixed. For some impl sets, they can remain; for others,

they’ll need to be wrappers. Note that these are routines for lam.

The thing to do is to provide these routines for the implementations

that do not provide them */

#define MPI_Comm_c2f(comm) (MPI_Fint)(comm)

#define MPI_Comm_f2c(comm) (MPI_Comm)(comm)

#define MPI_Type_c2f(datatype) (MPI_Fint)(datatype)

#define MPI_Type_f2c(datatype) (MPI_Datatype)(datatype)

#define MPI_Group_c2f(group) (MPI_Fint)(group)

#define MPI_Group_f2c(group) (MPI_Group)(group)

/* MPI_Request_c2f is a routine in src/misc2 */

#define MPI_Request_f2c(request) (MPI_Request)MPIR_ToPointer(request)

#define MPI_Op_c2f(op) (MPI_Fint)(op)

#define MPI_Op_f2c(op) (MPI_Op)(op)

#define MPI_Errhandler_c2f(errhandler) (MPI_Fint)(errhandler)

#define MPI_Errhandler_f2c(errhandler) (MPI_Errhandler)(errhandler)

/* For new MPI-2 types */

#define MPI_Win_c2f(win) (MPI_Fint)(win)

#define MPI_Win_f2c(win) (MPI_Win)(win)

#define MPI_STATUS_IGNORE (MPI_Status *)0

#define MPI_STATUSES_IGNORE (MPI_Status *)0

/* For supported thread levels */

extern int MPI_THREAD_SINGLE;
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extern int MPI_THREAD_FUNNELED;

extern int MPI_THREAD_SERIALIZED;

extern int MPI_THREAD_MULTIPLE;

/* MPI’s error classes */

#define MPI_SUCCESS 0

extern int MPI_ERR_BUFFER;

extern int MPI_ERR_COUNT;

extern int MPI_ERR_TYPE;

extern int MPI_ERR_TAG;

extern int MPI_ERR_COMM;

extern int MPI_ERR_RANK;

extern int MPI_ERR_ROOT;

extern int MPI_ERR_TRUNCATE;

extern int MPI_ERR_GROUP;

extern int MPI_ERR_OP;

extern int MPI_ERR_REQUEST;

extern int MPI_ERR_TOPOLOGY;

extern int MPI_ERR_DIMS;

extern int MPI_ERR_ARG;

extern int MPI_ERR_OTHER;

extern int MPI_ERR_UNKNOWN;

extern int MPI_ERR_INTERN;

extern int MPI_ERR_IN_STATUS;

extern int MPI_ERR_PENDING;

/* New MPI-2 Error classes */

extern int MPI_ERR_FILE;

extern int MPI_ERR_ACCESS;

extern int MPI_ERR_AMODE;

extern int MPI_ERR_BAD_FILE;

extern int MPI_ERR_FILE_EXISTS;

extern int MPI_ERR_FILE_IN_USE;

extern int MPI_ERR_NO_SPACE;

extern int MPI_ERR_NO_SUCH_FILE;

extern int MPI_ERR_IO;

extern int MPI_ERR_READ_ONLY;

extern int MPI_ERR_CONVERSION;

extern int MPI_ERR_DUP_DATAREP;

extern int MPI_ERR_UNSUPPORTED_DATAREP;

/* MPI_ERR_INFO is NOT defined in the MPI-2 standard. I believe that

this is an oversight */

extern int MPI_ERR_INFO;

extern int MPI_ERR_INFO_KEY;

extern int MPI_ERR_INFO_VALUE;

extern int MPI_ERR_INFO_NOKEY;

extern int MPI_ERR_NAME;

extern int MPI_ERR_NOMEM;
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extern int MPI_ERR_NOT_SAME;

extern int MPI_ERR_PORT;

extern int MPI_ERR_QUOTA;

extern int MPI_ERR_SERVICE;

extern int MPI_ERR_SPAWN;

extern int MPI_ERR_UNSUPPORTED_OPERATION;

extern int MPI_ERR_WIN;

extern int MPI_ERR_LASTCODE;

/* End of MPI’s error classes */

/* Bindings are the same as for MPI and are omitted here */

#include "gmpibinding.h"

/* Add the *new* routines */

#endif

B Implementing the generic header file and in-

terface library

The first step in the implementation is the creation of the ‘gmpi.h’ file from the
‘mpi.h’ file provided by a particular implementation. For the MPI implementa-
tions that we have considered, this can be handled with a simple perl program
that searches the include file for #define or enum definitions of the various MPI
constants. In addition, the typedefs are extracted; this allows us to ensure that
the typedefs have compatible sizes.
In addition, the necessary routines are provided by a ‘gmpitoimpl.c’ file;

this contains an implementation of the routines to manage MPI_Status ele-
ments. It also includes the implementation specific header file created above;
this provides a definition of most of the MPI terms. The complete implementa-
tion is
/*

For each implementation, use the perl script creategmpi to create the

file gmpiimpl.h, then use -I to point the compiler at the correct version

(e.g., put each into a separate directory).

*/

/* This header file defines all of the MPI objects with link-time values.

This must also contain the TRUE definition of MPI_Status */

#include "gmpiimpl.h"

#include <unistd.h>
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/* Routines to create, access, and destroy status objects.

This approach uses the smallest number of routines, in exchange for

making any status routine require a count or an index argument */

MPI_Status *GMPI_Status_create( int n )

{

MPI_Status *p;

p = (MPI_Status *)malloc( n * sizeof(MPI_Status) );

if (!p) MPI_Abort( MPI_COMM_WORLD, 1 );

return p;

}

void GMPI_Status_free( MPI_Status *p )

{

free( p );

}

int GMPI_Status_get_tag( MPI_Status *p, int idx )

{

return p[idx].MPI_TAG;

}

int GMPI_Status_get_source( MPI_Status *p, int idx )

{

return p[idx].MPI_SOURCE;

}

int GMPI_Status_get_error( MPI_Status *p, int idx )

{

return p[idx].MPI_ERROR;

}

int GMPI_Status_get_count( MPI_Status *p, int idx )

{

int count;

MPI_Get_count( &p[idx], &count );

return count;

}

#ifdef GMPI_NEEDS_CONVERTERS

/* Use this section for MPI implementations that do *not* use functions

for the f2c and c2f routines. If necessary, break these into separate

sections as required by the supported implementations. */

#endif
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